Memory distortions reveal different representations for specific and general knowledge

Marlie C. Tandoc, Cody V. Dong, Anna C. Schapiro

SfN 2022

How are shared and unique features represented in memory?

Items that "go together" have integrated neural representations

Statistical Learning

Concept Learning

Shared features

"go together" more than unique features

Schapiro et al. (2012, *Curr. Bio*)

Items that "go together" have integrated neural representations

Statistical Learning

Concept Learning

Schapiro et al. (2012, *Curr. Bio*)

Mack et al. (2016, PNAS)

Distortions in color memory

Brady et al. (2017, PsyArXiv); Chanales et al. (2021, Psychol. Sci); Zhao et al. (2021 J. NeuroSci)

Design

n = 85

Items within a category share most parts (shared features) Each item has an individuating part (unique features)

Attraction: Bias *towards* category features Repulsion: Bias *away* from category features

Part learning

Color memory test

Part learning trial

Shared and unique feature colors shown with equal frequency

Color memory trial

Class: gamma Codename: sorex

Continuously alternate between part learning and color memory

6 blocks (96 of each trial type total)

Part learning

Shared + Unique

Unique features show less attraction with learning

Shared
 Unique

Unique features show less attraction with learning

Replication study (matched color frequency during initial observation) n = 109 Shared Unique

Stronger attraction bias overall for shared features

Post-learning: Generalization

Novel satellite

Strong attraction for shared features on novel exemplars

Shared features are more susceptible to categorybased memory distortions than unique features

Shared features may have more integrated memory representations than unique features

C-HORSE

Complementary hippocampal operations for representing statistics and episodes

Train model on satellites

C-HORSE

Complementary hippocampal operations for representing statistics and episodes

on satellites
Present features one-by-one

Train model

C-HORSE

Complementary hippocampal operations for representing statistics and episodes

Train model on satellites **Present features** one-by-one Calculate pattern

similarity between

all features

TSP lesion

Shared and unique features are represented in memory according to their different computational-needs

