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How are shared and unique features

represented in memory?

Integrate Separate
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ltems that “go together” have

integrated neural representations

Statistical Learning Concept Learning

Sequence exposure
' ‘ Hippocampus

: [ Shared features
- “go together”
IQ more than unique
features

Schapiro et al. (2012, Curr. Bio)



ltems that “go together” have

integrated neural representations

Statistical Learning Concept Learning

Sequence exposure

attentional weighting _
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Schapiro et al. (2012, Curr. Bio) Mack et al. (2016, PNAS)
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Distortions in color memory

Attraction

Integration Separation

Brady et al. (2017, PsyArXiv); Chanales et al. (2021, Psychol. Sci); Zhao et al. (2021 J. NeuroSci)



Design
n=385

Unique Shared

Items within a category
share most parts
(shared features)

Nodon Funda 5?; Sorex 53 ; Volar
Motar Praxa :)- Gavan Denor

Each item has an
individuating part
(unique features)

Attraction: Bias fowards
category features

Repulsion: Bias away
from category features




Part learning

Color memory test

Class: gamma
Codename: denor

Class: gamma
Codename: sorex

C’& @ F@% A Class: gamma

Codename: denor

Correct!




Part learning trial

Class: gamma GUGSS-U ntiI'CorreCt

Codename: denor

Dﬁ @ Pﬁ 1  Class: gamma

Codename: denor

Shared and unique
feature colors shown Correct!
with equal frequency




Color memory trial “ o

Repel Orthog.

‘ Target ‘

Orthog. Attract

Class: gamma
Codename: sorex

by
.
Category
average color



Continuously alternate between part
learning and color memory

Part learning Color memory

Correct!

6 blocks (96 of each trial type total)
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Color memory

- Shared - Unique
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Color memory
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Attraction bias Attraction across learning
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Color memory

- Shared -® Unique

Attraction bias Attraction across learning Block 6: Color type
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Unique features show less attraction with learning



Color memory

- Shared -® Unique

Attraction bias Attraction across learning Block 6: Color type
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Unique features show less attraction with learning



Replication StUdy (matched color frequency during early observation)
n =109 - Shared - Unique
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Replication StUdy (matched color frequency during early observation)
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Replication StUdy (matched color frequency during initial observation)

n =109
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Stronger attraction bias overall for shared features



Post-learning: Generalization

Novel satellite
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Strong attraction for shared features on novel exemplars



Shared features are more susceptible to category-

based memory distortions than unique features

Shared features may have more integrated
memory representations than unigue features



Feature representations in a neural network model

C-HORSE

Complementary hippocampal operations Train model
for representing statistics and episodes on satellites

Schapiro et al. (2017)



Feature representations in a neural network model

C-HORSE
Complementary hippocampal operations Train model
for representing statistics and episodes on satellites

Present features
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Schapiro et al. (2017)



Feature representations in a neural network model

C-HORSE

Complementary hippocampal operations
for representing statistics and episodes

Schapiro et al. (2017)

Train model
on satellites

Present features
one-by-one

Calculate pattern

similarity between
all features




Feature representations in a neural network model

Category 1
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Shared Unique
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TSP lesion MSP lesion



Shared and unique features are represented

iIn memory according to their different
computational-needs
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